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Abstract An analytic approach to the modeling of stop-flow amperometric
measurements of cellular metabolism with thin glucose oxidase and lactate oxidase
electrodes would provide a mechanistic understanding of the various factors that affect
the measured signals. We divide the problem into two parts: (1) analytic formulas
that provide the boundary conditions for the substrate and the hydrogen peroxide at
the outer surface of the enzyme electrode layers and the electrode current expressed
through these boundary conditions, and (2) a simple diffusion problem in the liquid
compartment with the provided boundary conditions, which can be solved analyti-
cally or numerically, depending on the geometry of the compartment. The current
in an amperometric stop-flow measurement of cellular glucose or lactate consump-
tion/excretion is obtained analytically for two geometries, corresponding to devices
developed at the Vanderbilt Institute for Integrative Biosystems Research and Educa-
tion: a multianalyte nanophysiometer with effective one-dimensional diffusion and a
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multianalyte microphysiometer, for which plentiful data for metabolic changes in cells
are available. The data are calibrated and fitted with the obtained time dependences to
extract several cellular fluxes. We conclude that the analytical approach is applicable
to a wide variety of measurement geometries and flow protocols.

Keywords Biosensor · Analytical model · Enzyme electrode · Bioreactor ·
Microphysiometry · Electrochemistry

1 Introduction

Multianalyte microphysiometers [2–4] are enabling the simultaneous, dynamic elec-
trochemical measurement of extracellular metabolites from ∼105 mammalian cells
maintained in microfabricated bioreactors with microliter [5,6] or even nanoliter vol-
umes [7–10]. These devices, which make stop-flow measurements of the rates of
acidification, consumption of glucose and oxygen, and production or consumption of
lactate and other metabolites, are enabling the real-time measurement of metabolic
dynamics at sub-minute time scales and may provide a new approach to identifica-
tion and classification of unknown toxins or toxin cocktails. However, the quantitative
interpretation of the data requires a first-principles model that correctly represents the
spatiotemporal behavior of various diffusional, biochemical, and electrochemical pro-
cesses that occur in the transduction of a cellular metabolic flux to an electronic signal.
The particular challenge offered by these measurements is their speed—the balance
between the rates for these processes is set by the design of the bioreactor and the
associated sensors and the goal to optimize the temporal response of the sensor/bio-
reactor/cell system. Our ultimate design target for our sensor development project is
a subsecond to second response; however, as a result we cannot assume that the pro-
cesses are time-independent, and it is necessary to consider competing processes with
similar spatiotemporal scales.

This paper summarizes these processes in a generalized representation of a
microbioreactor with electrochemical sensing and then describes a detailed analyt-
ical model that can be tailored to our particular measurement geometry. A compre-
hensive review of analytical and numerical modeling of biosensors and specifically
enzyme electrodes recently discusses many of the basics in this area [11,12]. The
most significant accomplishment of our work is the formulation of boundary condi-
tions that represent analytically the bioelectrochemistry of the problem, so that the
computational effort can be focused on analytical or numerical solutions to a sim-
ple diffusion equation. This approach is in contrast to more conventional approaches
wherein a numerical model has multiple, connected compartments that have specific
properties or functions, such as a particular enzymatic conversion of a metabolite into
a substance that can be readily measured electrochemically. The limitation of the con-
ventional approach is the difficulty in obtaining the correct values for the numerous
internal parameters that specify or link the various compartments. With our approach,
the unspecified parameters appear explicitly in the formulation of the model, and
hence their known analytical form can be utilized to simplify the determination of the
parameters themselves through calibration experiments.
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Fig. 1 Three simple models of an instrumented bioreactor or microphysiometer. a Bare sensing electrode,
e.g., pH or O2. b Enzymatic electrode, e.g., lactate. c Enzyme electrode with a polymer layer, e.g., glucose.
Concentrations of the substrate cs (Glu, Lac) and the peroxide ch have a superscript index e in the enzyme,
p in the second polymer layer, and 0 in the liquid. Rs is the cellular flux, D is the diffusion constant, A is
the area of the electrode, i is the current, n is the number of donated electrons, and F is the Faraday constant

2 A simple model for electrochemical sensors in a microbioreactor

In this paper we consider several simplified models of a microbioreactor consisting of
cells that produce metabolic fluxes, located at one surface, and electrodes that allow
amperometric measurements at another surface. The cells and the electrodes are cou-
pled through diffusion of the excreted or produced species through the solution inside
the volume of the microbioreactor (Fig. 1). The diffusion coupling averages the cellu-
lar signals both in space and in time, but at the price of a finite time resolution of the
metabolic changes. The solution also nourishes the cells by providing them with oxy-
gen and nutrients and removing waste products. This is achieved through the stop-flow
cycle described in Sect. 2.1. Our ultimate aim is to model the stop-flow measurements
with the multianalyte microphysiometer (MMP) developed at the Vanderbilt Insti-
tute for Integrative Biosystems Research and Education (VIIBRE) [2–4], because it
is able to collect large quantities of physiological data that will benefit from auto-
mated, model-guided analysis. The upper surface of the microbioreactor is formed
by the 10 mm diameter sensor head, which holds two round enzyme electrodes of
radii ρ0 = 0.25 mm for glucose and lactate measurements, an oxygen electrode with
a radius of ρ0 = 0.14 mm, a counter electrode, and intake and output microfluidic
tubes through which the solution flows in the MMP chamber. The cells are spread
evenly on the lower surface of the reactor and trapped between two porous mem-
branes. Figure 1 presents an idealized one-dimensional picture, where the electrode
and the corresponding enzyme layer occupy the entire upper surface, thus the concen-
trations do not depend on the radial or angular variables. A measurement model with
a realistic treatment of the MMP geometry is considered in Sect. 4.2.
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2.1 Stop-flow measurements

At present, cellular metabolism in a bioreactor can be measured using either stop-flow
[2–4] or continuous flow [13] approaches. The stop-flow setup that we have adopted
provides the maximum sensitivity to measure slight metabolic changes by integrating
the metabolic analytes over the duration of the stop-flow interval. To begin our analy-
sis, and using the simple geometry of Fig. 1, we consider a cylindrical bioreactor that
has cells adherent to one end of the cylinder and a plate electrode at the other. We
reduce this to a one-dimensional model and consider first the classic case of a metal
electrode; for example, one for an amperometric measurement of oxygen (Fig. 1a).
We then extend this simple model to include an enzymatically active electrode, such
as glucose or lactate (Fig. 1b), and consider the case where the enzyme is sequestered
behind a polymer layer (Fig. 1c).

For our present stop-flow measurements, in the flow interval T f, of typically 80 s,
the cells are perfused, and we assume perfect, instantaneous mixing within the biore-
actor. In the stop interval Ts , typically 40 s, cellular metabolic activity at the bottom of
the bioreactor leads to a local change in nutrient and metabolic concentrations, which
diffuse toward the other end of the reactor during Ts . The cellular metabolic activity
is integrated over Ts , so a longer Ts will lead to larger concentration changes and
electrochemical signals. The duration of Ts is limited by the range of concentrations
to which the cells should be exposed, without significantly affecting their metabolism.
Too long a Ts may lead to the exhaustion of the measured metabolite and decoupling
from the electrode. The length of T f is set by the time required to flush the bioreactor
of metabolites and reestablish the baseline nutrient levels, and for the cells to recover
from the previous stop cycle. If a toxin is to be added, the instrument switches fluids
at the start of a particular flow interval. The sum of T f and Ts sets the time resolution
of the standard stop-flow technique. Our analysis addresses not only the full cycle,
but also the dynamics of the metabolic changes and sensor consumption of analytes
during Ts . The main time scale that governs these dynamics is τ = L2/D, where D is
the diffusion constant for the measured analyte and L is the distance between the cells
and the electrode. Given this understanding of the stop-flow measurement, which is
central to our entire approach, we can proceed to specify the boundary conditions.

2.2 Solutions to a simple diffusion boundary problem

In our measurements, the cellular consumption or excretion fluxes serve as a bound-
ary condition for a diffusion boundary problem at the bottom surface of the bioreactor
(Fig. 1a). At the electrode at the top, this substance is converted and detected at a rate
that is determined by the sensor properties. For example, if the electrode is biased at
the correct voltage, the rate of conversion of O2 to H2O for electrochemical detection,
described by

O2 + 4e− + 4H+ Pt→ 2H2O, (2.1)

is sufficiently high that the current is limited solely by the diffusion of O2 into the
sensor region. The diffusion equation and the boundary condition at the cell surface are
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D∂t
= ∂2

∂x2 c(t, x), (2.3)

where c is the substrate concentration, x is the distance from the surface of the elec-
trode, and R(t) is the time-dependent cellular flux (rate) at the surface of the cells,
which lies at a distance L from the electrode. The concentration is always zero at
the electrode, which consumes the analyte being measured, c(t, 0) = 0. Everywhere
else in the chamber, the initial concentration (at t = 0) is c∗, c (0, x) = c. The dis-
continuity at x = 0, t = 0 is a standard idealization of a rapid initialization of the
electrical potential at t = 0 and ignores the electrochemical double layer. One way to
achieve this initialization is a strong flow of the solution for t < 0, which maintains
the constant concentration c∗ throughout the solution, except in a very thin layer close
to the electrode. The flow stop at t = 0 and the metabolic activity of the cells affect
concentrations in the media. The electrode current by definition is

I (t)

nF AD
= ∂

∂x
c (t, x)

∣
∣
∣
∣
x=0

, (2.4)

where n = 4 is the number of electrons donated by the electrode, F is the Faraday
constant, and A is the surface area of the electrode.

If we look for a solution that is time-independent, the equation and the boundary
conditions are satisfied by a linear function in x : c (x) = (R/D) x , where we assume
a constant cellular flux R. The stationary solution is the limit of the stop-flow problem
for long times. The electrode current is then given by

I = −nF AR. (2.5)

The two most popular approaches for solving diffusion boundary problems are the sep-
aration of variables (Fourier) and the Laplace transform methods. The first is straight-
forward but laborious. The second convolves the concentration time dependence with
an exponential kernel,

c̄ (s, x) = L[c (t, x)] ≡
∞∫

0

c (t, x) e−st dt. (2.6)

It immediately produces the Laplace transformed result c̄ (s, x) in terms of the Laplace
transformed cellular flux; however, the last step—an inverse Laplace transformation—
might be more involved. Both methods yield the same well-known answer,
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The sum consists of exponents whose decay times decrease with increasing index.
The largest decay time is 4

π2 τ = 4L2

π2 D
, after which the solution approaches the steady-

state, linear gradient, given by the first term. Shortly, we will use Eq. 2.7 to determine
the time dependence of the stop-flow current, given different scenarios of the cellular
metabolic activity.

2.3 Asymptotic time behavior for the inverse Laplace transform

When the Laplace transform method is used to solve a boundary problem with an ini-
tial condition, the final step for finding the time dependence of any quantity consists of
an inverse Laplace transformation. These transforms are tabulated for many functions,
but usually the tables do not provide transforms suitable for boundary value problems,
such as Eq. 2.7. The general definition of the inverse transformation involves a contour
integral in the complex plane of the Laplace variable s. The integral can be expressed
as a sum over the residues of the integrand’s singularities. In most boundary prob-
lems, the singularities are poles, located on the imaginary s axis. The singularities
away from s = 0 produce decaying exponents, such as in the solution above. They
disappear very quickly and can be ignored if we use measurements at times longer
than the longest decay time. If there is a remaining time dependence, it comes from
a singularity at s = 0, which corresponds to the asymptotic behavior at long times.
Such a contribution is missing in the simple problem above, because the asymptotic
behavior is time-independent. In the case of enzyme electrodes with two substrates
(glucose or lactate, and H2O2), the asymptotic temporal behavior is more complicated,
as it is in more complicated geometries. Then an easy way to obtain the asymptotic
time dependence for any quantity, e.g., the concentration of the substrates or the cur-
rent, is to expand the Laplace transformed function around s = 0, isolate only the
singular part of the expression, and perform an inverse Laplace transform only on it.
We present the results of this method later in the paper.

2.4 Time-dependent boundary conditions

When the boundary conditions depend on time, as in the case when the cellular flux
changes with time, the solution can be expressed as a convolution of the solution
c0(t, x) for unit boundary conditions (R = 1) and the time derivative of the boundary
condition, i.e.,

c (t, x) =
t∫

0

R
(

t ′
)

∂t
(
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(

t − t ′, x
)

θ
(

t − t ′
))

dt ′ = R (0) c0 (t, x)

+
t∫

0

(

∂t ′ R
(
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))

c0
(
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)

dt ′. (2.8)
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Fig. 2 Electrode current during two sequential stop-flows (4 < t < 8 and 12 < t < 16) with sensor time
constant τ = 1. The time constant σ of the toxin-induced cellular response is: solid σ = 2, dashed σ = 5,
dotdashed σ = 20

This is called the Duhamel formula, and in the Laplace method it reflects the basic
properties of the Laplace transformation [14].

Figure 2 demonstrates the kinetics of a simple measurement. Unlike the exam-
ple above, where we had a substrate (e.g., O2) depleted by the cells [2–4], here we
consider a substrate produced by the cells (e.g., insulin [15]). At the end of the first
stop-phase the cells are exposed to a toxin that suppresses their metabolic activity. The
rate of increase of sensor current for 4 < t < 8 is determined by both the constant
cellular metabolic flux R and the diffusion properties of the bioreactor. For t > 8
(the beginning of the second flow period), R goes to zero with an exponential time
constant σ . The system response is determined by the ratio of σ to the time constant
of the bioreactor, τ . Hence the ability to study the dynamics of the cellular response to
the toxin is determined in part by the time constant of the bioreactor. As we shall see
later, for our system the diffusion of the analyte through the bioreactor is an order of
magnitude slower than sensor response. Hence measurement of metabolic dynamics
is simplified by using very small bioreactors [5].

2.5 Extracting the cellular rates

The problem that we aim to solve is an inverse one: extracting the cellular rate from
the electrode current data. From the Duhamel formula, we can observe that the flux
is convolved with an integral kernel, coming from the solution of the constant flux
boundary problem. This smears the flux signal by the characteristic sensor time scale
τ . One analogy of the coupling between the cell flux and the electrode current during
the stop-flow period is a low-pass electronic signal filter, which prevents the resolution
of any signal with a frequency higher than 1/τ . To find the time dependence of the
cellular flux for the stop-flow period, we must solve a Volterra type 1 integral equation,
which is considered an ill-posed problem. Because of the exponential smearing of the
time dependence of the cellular flux signal, the inverse determination of this signal to
any desired level of precision requires exponentially higher precision of the measured
signal. In other words, any errors of the measured signal are exponentially enhanced
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in the solution. The same happens with the systematic errors coming from the model
itself and the uncertainties of its parameters. This limits the amount of information
we can extract from a single stop-flow measurement. The easiest quantity to extract is
the time average of the cell flux during the stop-flow period. The next is the average
change of the flux during that interval. When the time scales that govern the metabolic
changes are long compared to the stop-flow period, these two numbers provide good
characterization of a slowly changing cellular flux, which can be approximated by a
linear function during the stop-flow interval R (t) = R1 + R2t .

At the end of the paper, we discuss the problem of metabolic changes that are faster
than the stop-flow interval.

3 Enzyme electrodes

3.1 Description

While unmodified electrodes can measure pH, O2, and H2O2, the use of enzyme coat-
ings enables the measurements of other species that can be enzymatically oxidized.
We now extend the simple model discussed above to include the enzyme layer in
Fig. 1b. Enzyme electrodes based on glucose oxydase (GOX) and lactate oxydase
(LOX) have been studied extensively in recent years [16–19], as have electron trans-
fer and the effects of the inhomogeneity of the enzyme-loaded media on the rate of
the reactions [20,21]. Here we consider the simplest possible model of the enzyme
reactions, linearized kinetics. One of our typical enzyme electrodes consists of a thin
platinum wire with a flat circular end of radius ρ0. A thin polymer layer that contains
the enzymes GOX or LOX is deposited only on that end and exposed to the solution
[2]. That layer also includes bovine serum albumin (BSA) and the cross-linking agent
glutaraldehyde. The enzyme layer is a porous medium that allows the substrates to
diffuse through it. The equation for the effective chemical reaction occurring in the
GOX catalyzed enzyme layer is

glucose + O2 + H2O → gluconic acid + H2O2. (3.1)

and in the LOX catalyzed layer it is

lactate + O2 + H2O → pyruvate + H2O2. (3.2)

The H2O2 will then diffuse through the cross-linked BSA to the platinum electrode,
where it donates two electrons and is oxidized back to water and oxygen. The potential
at which the peroxide is oxidized completely (zero concentration at the electrode) is
+0.6 V with respect to an Ag/AgCl reference electrode. While some peroxide escapes
from the outer surface of the enzyme layer, most of the available oxygen is recycled
within the enzyme layer by reaction (3.1) and the inverse of reaction (2.1) at the elec-
trode surface. A second polymer (NafionTM) layer not containing GOX is deposited
on the surface of the GOX layer (Fig. 1c) to limit the diffusion of the glucose, which
keeps the reaction in the linearized regime and limits the escape of peroxide, thereby
increasing the signal [22]. This layer also minimizes the bio-fouling of the enzyme
and the BSA. If a Nafion layer was used with the LOX electrode, the mesoporous, ani-
onically charged Nafion could prevent the diffusion of the negatively charged lactate
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into the sensor, but because of the much smaller concentrations of lactate in the cell
media, such an extra diffusion barrier is not needed for the LOX electrode.

3.2 Scales and assumptions

One of the most important features of the enzyme electrodes is their thinness. The
thickness of the enzyme layer δ and the second polymer layer δ is much smaller than
the radius of the electrode ρ0 and the characteristic distance L between the cells and
the electrodes, i.e., the microphysiometer height. Hence we consider the diffusion
inside the electrode layers as one-dimensional, with concentration depending only
upon x . Another approximation that follows from the thinness of the layers is that
the characteristic times for diffusion through the layers (δ2/D and ε2/D, where D is
the diffusion constant) are much shorter than all other characteristic times, and we do
not need to convolve the sensor response with the metabolic and microphysiometer
responses; i.e., we treat the sensor response as instantaneous.

Another parameter with a dimension of length is 1/α, where α =
√

kcatCE
D1kM

char-
acterizes the enzyme reaction. Here kcat is the reaction constant, CE is the enzyme
concentration, kM is the Michaelis constant, and D1 is the diffusion constant for the
substrate. From our calibrations of the electrodes with known concentrations of the
substrates we can determine that αδ is small for the glucose (αδ ≈ 0.03), but much big-
ger for the lactate (0.1 < αδ < 0.9). The condition that the GOX and LOX reactions
are in the linearized kinetics regime requires that the concentration of the substrate
is very low, i.e., c0

S << kM . The linearized kinetics assumption allows the use of
linear differential equations and the encapsulation of all the chemical dynamics into a
single parameter α. The linearity condition can be controlled by providing sufficient
enzyme loading and a diffusion barrier that limits the influx of the substrate and the
escape of the peroxide. This condition is violated for certain GOX electrodes used
in our MMP cellular metabolic measurements. We can extend the analytic universal
boundary conditions, which are developed in Sect. 3.4, for the nonlinear Michaelis–
Menten reaction kinetics. We will present these in Sect. 3.5, but the derivation of the
relationship between the electrode current and the cellular metabolic activity requires
a numerical solution of the usual linear diffusion equations for the bioreactor with
nonlinear boundary conditions.

Related to this condition is the assumption that oxygen is sufficiently abundant in
the solution (although at lower molar concentrations than the glucose in the solution)
that the reaction is controlled by the concentration of the substrate, not by the
oxygen. This assumption was experimentally validated for our electrodes during nor-
mal measurement conditions [22], although this may not be the case in studies of
cellular metabolism under hypoxic conditions. In the hypoxic case, the oxygen can be
replaced as an oxidizing agent, through the use of wired enzymes [23].

An important issue is the nature of diffusion inside the enzyme and polymer (Nafion)
layers. We adopt the model of a porous substance, where there are large voids through
which the substrates can diffuse and an excluded volume unavailable to them. If the
diffusion channels are straight enough, the diffusion constant for the corresponding
substrate remains unchanged in the porous material. However, the macroscopic con-
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centration is decreased in proportion to the available volume θe,p = Vavailable/Vfull,
where indices e and p relate to the enzyme and the protective polymer layers. In
terms of matching the boundary conditions for diffusion between the different lay-
ers, our excluded volume approach produces a concentration jump at the boundary,
but a continuous gradient. (The alternative of having two different diffusion con-
stants would result in the concentration being continuous at the boundary and the
gradient discontinuous.) Hence we assume that the diffusion constants in the solution
and the electrode layers are the same. Numerically, at the temperature of the media
(37◦C), assuming diluted solutions, DLac ≈ DH2O2 = 1.4 × 10−3 mm2/s, DGlu =
0.9 × 10−3mm2/s, DO2 = 2.8 × 10−3mm2/s.

3.3 Initial concentrations and quasi-stationary solutions for the electrode layers

The thinness of the electrode layers allows the imposition of simple boundary con-
ditions, involving the concentrations of the glucose or lactate and the peroxide at
the outer surface of the electrode layers as well as their gradients and time deriv-
atives. The same boundary conditions also determine the time dependence of the
electrode current during the stop-flow period. Because of the thinness, we can ignore
the radial direction and consider one-dimensional diffusion equations with a sink term
for the substrate and the same term as a source for the peroxide (3.3). As discussed
in Sect. 3.2, the design of the enzyme electrodes and the ambient concentration of
substrates validate the approximation in which the source/sink term linearly depends
only on the concentration of the substrate, but not on the concentration of the oxy-
gen, peroxide, or other products of the enzyme reaction. Our diffusion equations
become

∂ce
S (t, x)

D1∂t
= ∂2

∂x2 ce
S (t, x) − α2ce

S (t, x),

∂ce
H (t, x)

D∂t
= ∂2

∂x2 ce
H (t, x) + α2ce

S (t, x),

(3.3)

where D and D1 are the diffusion constants for the peroxide and the substrate. The
boundary conditions at the platinum electrode surface are simple:

∂

∂x
ce

S (t, x)

∣
∣
∣
∣
x=0

= 0, ce
H (t, 0) = 0. (3.4)

The electrode current is now defined by

I (t)

nF AD
= − ∂

∂x
ce

H (t, x)

∣
∣
∣
∣
x=0

. (3.5)

The equations for the concentrations in the protective layer that lack the source/sink
terms are

∂cp
S (t, x)

D1∂t
= ∂2

∂x2 cp
S (t, x) ,

∂cp
H (t, x)

D∂t
= ∂2

∂x2 cp
H (t, x). (3.6)

The matching condition between the concentrations and their derivatives across the
enzyme-polymer and polymer-liquid boundaries contains the available volume ratios
θe and θp,
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ce
S (t, δ)

θe
= cp

S (t, δ)

θp
,

∂

∂x
ce

S (t, x)

∣
∣
∣
∣
x=δ

= ∂

∂x
cp

S (t, x)

∣
∣
∣
∣
x=δ

,

ce
H (t, δ)

θe
= cp

H (t, δ)
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∂
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ce

H (t, x)

∣
∣
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x=δ
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S
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�
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S
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∣
�
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S (t, x)
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∣
∣
∣
x=ε+δ

,

c0
H

∣
∣
∣
�

(t) = cp
H (t, ε + δ)

θp
, ∂nc0

H
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∣
�

(t) = ∂
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H (t, x)

∣
∣
∣
∣
x=ε+δ

(3.7)

where c0
S

∣
∣
�

(t), c0
H

∣
∣
�

(t) are the concentrations and ∂nc0
S

∣
∣
�

(t), ∂n c0
H

∣
∣
�

(t) their nor-
mal derivatives at the outer surface � of the electrodes’ layers. The initial conditions
(during the entire flow period) are

c0
S

∣
∣
∣
�

(0) = c∗, c0
H

∣
∣
∣
�

(0) = 0, ∂n c0
S

∣
∣
∣
�

(0) = 0, ∂n c0
H

∣
∣
∣
�

(0) = 0, (3.8)

where c∗ is the substrate concentration in the cell media. Solving the station-
ary equations, we obtain the stationary concentrations inside the layers during
the flow periods (which are the initial conditions for the stop-flow concentra-
tions):

ce
S(0, x) = A cosh(αx), where A = θeθpc∗

θp cosh(αδ) + αεθe sinh(αδ)
,

ce
H (0, x) = A(1 − cosh(αx)) + A

θp cosh(αδ) + αεθe sinh(αδ) − θp

δθp + εθe
x,

cp
S (0, x) = Aα sinh(αδ)(x − δ − ε) + θpc∗,

cp
H (0, x) = Aθp

cosh(αδ) + αδ sinh(αδ) − 1

δθp + εθe
(x − δ − ε),

(3.9)

and the initial (pump-on) current
I0

nF AD
= α2δθe

2εθe + δθp

2
(

εθe + δθp
)c∗. (3.10)

The easiest way to find the time-dependent solution of Eq. 3.6 with 3.4 is to perform a
Laplace transformation in time (2.6) to obtain the transformed concentration as a func-
tion of the Laplace variable s, instead of time t . The s-dependent Laplace transformed
solutions are then

c−e
S (s, x) = ĀS (s) cosh (β1x) + 1

s
ce

S (0, x),

c−p
S (s, x) = B̄S (s) cosh (ξ1x) + C̄S (s) sinh (ξ1x) + 1

s
cp

S (0, x),

c−e
H (s, x) = ĀH (s) sinh (ξ1x) + 1

s
ce

H (0, x),

c−p
H (s, x) = B̄H (s) cosh (ξ x) + C̄S (s) sinh (ξ x) + 1

s
cp

H (0, x),

where ξ = √

s/D, ξ1 = √

s/D1, β1 =
√

s/D1 + α2. (3.11)
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We can eliminate the six functions ĀS(s), ĀH (s), B̄S(s), C̄S(s), B̄H (s) and C̄H (s)

from the eight matching conditions (3.7) and express ∂n c0
S

∣
∣
∣
�

(s) and ∂n c0
H

∣
∣
∣
�

(s) in

terms of c0
S

∣
∣
∣
�

(s) and c0
H .

∣
∣
∣
�

(s).

We are interested in times much longer than the very short time scales δ2/D and
ε2/D. These times will correspond to small Laplace variables s, such that ξδ, ξ1δ, ξε

and ξ1ε are all small. Expanding in all small parameters and keeping the leading terms
only, we obtain the boundary conditions and perform an inverse Laplace transform
L−1[c̄ (s, x)]. The approximation is quasi-stationary. It neglects fast transient changes
in the thin layers. It has some similarity to the Reactor Layer Approximation [24,25].
Next we present the results of this process.

3.4 Universal boundary conditions for the thin enzyme electrodes

We now can write the boundary conditions for all surfaces � of the generalized
microbioreactor of arbitrary geometry:

cells: ∂nc0
S

∣
∣
∣
�

= R (t)

D1
, ∂nc0

H

∣
∣
�

= 0,

electrode: ∂nc0
S

∣
∣
∣
�

= α2δθec0
S

∣
∣
�

+ (

δθe + εθp
) ∂t c0

S

∣
∣
�

D1
,

c0
H

∣
∣
∣
�

=
(

δ

θe
+ ε

θp

)

∂nc0
H

∣
∣
�

+ α2δ2

2
c0

S

∣
∣
�

,

elsewhere ∂nc0
S

∣
∣
∣
�

= 0, ∂nc0
H

∣
∣
�

= 0.

(3.12)

The electrode current is expressed through the boundary conditions as

I (t)

nF AD
=

∫

�

(

∂nc0
H

∣
∣
∣
�

+ α2δθe c0
S

∣
∣
∣
�

)

d2�. (3.13)

These equations have a simple interpretation—they represent the steady-state bal-
ances of the substrates. The one for glucose/lactate (S) states that the flux through
the electrode boundary is equal to the change of the concentration inside the layer
times the volume plus the consumption rate due to the enzyme reaction (also times
the enzyme volume). The equation for the peroxide (H) relates the concentration
at the boundary to the flux that escapes plus the peroxide created in the enzyme
layer. The equation for the current states that the flux of the electrons donated by
the peroxide at the metal surface is proportional to the rate of peroxide creation by
the enzyme reaction minus the peroxide flux that escapes in the microbioreactor.
The fully stationary limit for the enzyme layer is realized when the concentration
of the glucose within the layer is constant. In that limit, the time-dependent term
(

δθe + εθp
)

∂t c0
S

∣
∣
�

/D1 in (3.12) disappears. It is also easier to obtain the boundary
conditions (3.12), because we must solve time-independent equations. In most of the
applications, the time-dependent term above can be neglected, because its dimen-
sionless coefficient � = (

δθe + εθp
)

/L is the smallest among those kept in this
approximation.
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What remains is to solve the diffusion problem in the microbioreactor,

1

D1

∂c0
S(t, x)

∂t
= ∂2

∂x2 c0
S(t, x),

1

D

∂c0
H (t, x)

∂t
= ∂2

∂x2 c0
H (t, x), (3.14)

consistent with the initial conditions (3.8) and the boundary conditions (3.12).
Diffusion problems with boundary conditions that provide a linear combination of
the concentrations and their gradients are well defined and can be solved numerically
for any geometry of the microbioreactor that couples the cellular fluxes with the elec-
trodes. The addition of a time derivative to the boundary conditions is less common
but should be computationally treatable. In the cases when we can neglect �, we can
simplify the problem by dropping the time derivative.

3.5 Michaelis–Menten regime for the enzyme: nonlinear boundary conditions

It is remarkable that even when the enzyme reaction rate depends nonlinearly on the
glucose or lactate concentration, we can solve analytically the nonlinear stationary
diffusion-reaction equations for the enzyme layer and again encapsulate all the char-
acteristics of the sensor into nonlinear boundary conditions for the diffusion in the
microbioreactor (3.14). The Michaelis–Menten form of the stationary equations for
the concentrations in the enzyme layer is

d2ce
S

dx2 = α2ce
S

1 + ce
S/M

,
d2ce

h

dx2 = − α2ce
S

1 + ce
S/M

. (3.15)

We can reduce these to first order differential equations because they do not depend
explicitly on x . The solution for the first one is

√
2αx =

z∫

z0

dz√
z − z0 − ln (1 + z) + ln (1 + z0)

, z = ce
S (x)/M . (3.16)

It presents ce
S (x) as an implicit function (Fig. 3) of x and ce

S (0),

ce
S (x) = ce

S (0) F
(

αx, ce
S (0)/M

)

. (3.17)

The solution for the peroxide is

ce
H (x) = ax + ce

S (0)
(

∂−2
1 F

(

0, ce
S (0)/M

) − ∂−2
1 F

(

αx, ce
S (0)/M

))

, (3.18)

where ∂−2
1 F means a double indefinite integral with respect to the first argument of

F , and a is directly related to the measured current I = nF ADa. It is easy to take into
account a possible protective Nafion layer to get the following nonlinear boundary
conditions:

∂nc0
S

∣
∣
∣
�

= θp
ε

(

c0
S

∣
∣
�

− ce
S(0)

θe
F

(

αδ, ce
S (0)/M

))

,

∂nc0
H

∣
∣
∣
�

= θp
ε

(

c0
H

∣
∣
�

− aδ
θe

− ce
S(0)

θe

(

∂−2
1 F

(

0, ce
S (0)/M

) − ∂−2
1 F

(

αδ, ce
S (0)/M

)))

,

(3.19)

where

c0
S

∣
∣
∣
�

= ce
S (0)

(
1

θe
F

(

αδ, ce
S (0)/M

) + aε

θp
∂1 F

(

αδ, ce
S (0)/M

)
)

,
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Fig. 3 The implicit dependence between cS(x), cS(0) and αx in the enzyme layer, using a Michaelis–
Menten reaction rate. The second sheet (visible in the upper left-hand corner) is a parameterization of the
implicit function using modification of the linearized solution, allowing the explicit expression cS(x) =
cS(0)F(αx, cS(0)/M)

a

(
ε

θp
+ δ

θe

)

− c0
H

∣
∣
∣
�

= ce
S (0)

(
aε

θp
∂−1

1 F
(

αδ, ce
S (0)/M

)

− 1

θe

(

∂−2
1 F

(

0, ce
S (0)/M

)−∂−2
1 F

(

αδ, ce
S (0)/M

))
)

.

(3.20)

Some of the cellular metabolism data collected with the MMP at VIIBRE are at high
concentrations of glucose, which violate the condition c0

S << kM . In a future paper
we shall present the extraction of the cellular metabolic rates for the nonlinear regime,
using the analytical nonlinear boundary conditions presented in this section and a
numerical solution for the diffusion equations in the liquid gap.

4 Analytic solutions for some simple geometries

4.1 One dimension

Equations 3.12–3.14 can be solved analytically for some simple microbioreactor
geometries. This is very useful when many of the parameters that appear in the bound-
ary conditions (3.12) are unknown, and it is a fast way to estimate the cellular fluxes by
approximating the more complicated geometry of the microbioreactor with a simpler
one. For example, one-dimensional analytical solutions to the geometries in Fig. 1b, c
can be very useful in deconvolving the experimental data. The concentrations of the
substrate and the peroxide will depend only on the distance from the electrode x and
not on the other coordinates.

The analytical solution for the Laplace transformed equations (3.14) in the one-
dimensional case, using only the cell interface boundary condition, is

c−0
S (s, x) = ḠS (s) (cosh (ξ1x)− tanh (ξ1L) sinh (ξ1x))

+
(

R̄ (s) sinh (ξ1x)

ξ1 D1 cosh (ξ1L)
+c∗

s

)

,

c−0
H (s, x) = Ḡ H (s) (cosh (ξ x) − tanh (ξ L) sinh (ξ x)). (4.1)
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Using the electrode boundary conditions from (3.12), we can find ḠS (s) and Ḡ H (s),
then find the concentrations and their derivatives at the boundary and, from (3.13),
finally find the Laplace transformed current

Ī (s)

nF AD
=ϕ

L

{((

1 − ϕ
coth (ξ1L)

ξ1L

)

(1 − �ξ L tanh(ξ L)) + ��(ξ L tanh(ξ L))2
)

c∗

s
+ R̄ (s) τ1

L
× 1

ξ1L sinh (ξ1L)

((

1 − (ϕ + τ1s�)
coth (ξ1L)

ξ1L

)

(1 − �ξ L tanh (ξ L)) + �� (ξ L tanh (ξ L))2
)}

,

where ϕ =α2δLθe, τ(1) = L2

D(1)

, � = δθe + εθp

L
,� = δ

2Lθe
, � = 1

L

(
δ

θe
+ ε

θp

)

(4.2)

up to higher order terms in α2δ2, δ/L and ε/L . Ignoring �, because it contains prod-
ucts of two small quantities (θe,p and δ/L, ε/L), using a linearly changing cell rate
R(t) = R1 + R2t , and taking the large time limit of the inverse Laplace transforma-
tion, we get

I (t) = nF AD
ϕ

L

{

−c∗ϕ t

τ1
− R1

τ1

L

(

− t

τ1
− ϕ

−3t2 + t (6�τ − τ1)

6τ 2
1

)

−R2
τ 2

1

L

⎛

⎝− t2

2τ 2
1

+
t
(

� τ
τ1

+ 1
6

)

τ1
+ ϕ

(

t3

6τ 3
1

+ t2

τ 2
1

(
1

12
− �

τ

2τ1

)

− t

τ1

(

�
τ

6τ1
− �

τ 2

3τ 2
1

+ 7

120

)))

+ const

}

. (4.3)

When there is no cell flux, and �,� are small, we can perform the transform exactly:

I (t) = nF ADϕ
c∗

L

⎛

⎝1−ϕ

⎛

⎝
1

3
+ t

τ1
− 2

π2

∞
∑

n=1

e
−π2n2 t

τ1

n2

⎞

⎠ −2�

∞
∑

n=0

e−π2(n+1/2)2 t
τ

⎞

⎠.

(4.4)

The thick line in Fig. 4 presents no-cell data from a glucose sensor in a nanoliter
device, termed a nanophysiometer [26], which is effectively one-dimensional. The
thin solid line shows that Eq. 4.4 can provide an excellent three-parameter fit to the
data (shown by a thick line). Initially, the current becomes more negative as peroxide
begins to accumulate within the enzyme layer after the flow is stopped. During flow,
peroxide is lost at the outer electrode layer interface by being washed out so that a
zero boundary condition is maintained for the H2O2 concentration. When the pump
stops, the peroxide loss is decreased and the current grows. Eventually, the glucose
concentration in the liquid starts to decrease, the peroxide responds, and the absolute
value of the current decreases linearly. The linearity of the time dependence of the
no-cell current at long times is a signature for the one-dimensional geometry. The dip
is also evident in other geometries.
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Fig. 4 A comparison of the model and experimental data for a thin film glucose sensor. The current with-
out cells in a 1D geometry, with the stop-flow interval beginning at t = 0, fitted using Eq. 4.4: thin curve
ϕ = 0.138,� = 0.092. The effective length is L = 0.33 mm. Data courtesy of Franz Baudenbacher
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Fig. 5 The idealized MMP geometry: axial symmetry, and the chamber has infinite radius

4.2 Solution for the multianalyte microphysiometer (MMP) geometry

The most important geometry, however, is that of our MMP (Fig. 5). If we consider
the distance between the electrodes and the outer walls of the head to be much larger
than the width of the gap between the upper and lower surfaces (L = 0.1 mm), we
can approximate the geometry by two infinite planes, the lower one covered uniformly
with cells, and the round enzyme electrode with radius ρ0 = 0.25 mm in the center of
the upper one. Because ρ0 and L are comparable, we must consider a two-dimensional
diffusion within the microphysiometer chamber, where the concentration depends on
the time, the vertical distance x , and the radial coordinate ρ. Because of the radial
symmetry there is no dependence on the azimuthal angle. In cylindrical coordinates
the Laplace transformed diffusion equations are

sc0
S (s, ρ, x) − c∗

D1
= 1

ρ

∂

∂ρ
ρ

∂

∂ρ
c0

S (s, ρ, x) + ∂2

∂x2 c0
S (s, ρ, x),

sc0
H (s, ρ, x) − c∗

D1
= 1

ρ

∂

∂ρ
ρ

∂

∂ρ
c0

H (s, ρ, x) + ∂2

∂x2 c0
H (s, ρ, x).

(4.5)

We convert the partial differential equations into ordinary ones using another inte-
gral transformation, the Hankel transformation H, to obtain the Hankel transformed
quantity c̃ (σ ):
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Fig. 6 a Lactate data with cells in the MMP (upper points) and no cells (lower ones), with 0.3 Mmol lactate
concentration in the solution. The stop-flow starts at t = 0. The stop-flow cell data end at t = 50 s, while the
stop-flow no-cell data end at t = 40s, after which some extra lactate is added during the flow for calibration
purposes (the step at t = 50 s). The parameters of the model are extracted through data fit (the continuous
line). b Current change (�I (t) = i(t) − i(15)) for the cell data, starting at t = 15 s. The continuous line
is a 2-parameter fit (R1, R2) using (4.13). The dashed line is a 1-parameter fit from a numerical model1 of
the same device

c̃(σ ) = H[c(ρ)] ≡ 2π

∞∫

0

c(ρ)J0(2πρσ)ρdρ,

c(ρ) = H −1 [̃c(σ )] ≡ 2π

∞∫

0

c̃(σ )J0(2πρσ)σdσ,

(4.6)

where Jn are the Bessel functions of the first kind. Through this we transform
the ρ derivatives in the radial part of the Laplacian into the square of the Han-
kel variable σ 2, multiplying the Laplace and Hankel transformed concentration ˜̄c:

H[ 1
ρ

∂
∂ρ

ρ ∂
∂ρ

c0
S(s, ρ, x)] = 2πσ 2̃c

0
S(s, σ, x).

A convenient feature of the Hankel transform of the current density is that its value
at σ = 0 and x = 0 is the integral of the current density over the upper surface of
our bioreactor volume, i.e., the total electrode current we are measuring. The Hankel
transformed solution of the diffusion equations within the volume of the bioreactor,
without taking into account the boundary conditions, is similar to Eq. 4.1:

c̃
0
S (s, σ, x) = ˜bS(s, σ ) (cosh(ζ1x) − tanh(ζ1L) sinh(ζ1x))

+
(

R(s) sinh(ξ1x)

ξ1 D1 cosh(ξ1L)
+ c∗

s

)

δ(σ )

2πσ
,

c̃
0
H (s, σ, x) = ˜bH (s, σ ) (cosh(ζ x) − tanh(ζ L) sinh(ζ x)), ζ(1) =

√

ξ2
(1) + (2πσ)2,

(4.7)

where ˜̄bS,H (s, σ ) are as-yet unspecified functions and δ is the Dirac function. This
result is exact for an unbounded plane, but it also contains the singularity of the delta
function. For our bounded sensor head we can regularize this solution by considering
a large but finite cutoff R0 for the radial integration that reflects the finite radial size
of the MMP: δ(σ )

2πσ
= limR0→∞ R0

σ
J1 (2π R0σ). We recognize the right-hand side of
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this equation as the Hankel transform of θ (R0 − ρ), which equals 1 for ρ ≤ R0 and
0 for ρ > R0.

We now must address the problem of applying the boundary conditions as defined
for our untransformed variables (Eq. 3.12) to our Laplace and Hankel transformed
variables. At first glance we might assume that this simply requires computing the
Hankel transform of the two electrode equations in (3.12). While this is correct for

the gradient terms
(

∂n c0
S,H

∣
∣
∣
�

)

, the untransformed concentrations must be multiplied

by θ (R0 − ρ) to account for the fact that no conditions are imposed on them outside
the small radius of the electrode. Expressing all concentrations in terms of the Hankel
transformed ones, we convert the matching conditions (3.12) into an integral equation,
where the concentrations ˜̄c0

S,H (s, σ, 0) are convoluted by an integral kernel

K
(

σ, σ ′) ≡ 2π

∞∫

0

J0 (2πρσ) θ (ρ0 − ρ) J0
(

2πρσ ′) ρdρ

= ρ0

σ 2 − σ
′2

(

σ J0
(

2πρ0σ
′) J1 (2πρ0σ) − σ ′ J0 (2πρ0σ) J1

(

2πρ0σ
′)).

(4.8)

The matching conditions (3.12) are now integral equations:

∂n ˜̄c0
S (s, σ, x)

∣
∣
∣
x=0

= 2π

∞∫

0

K
(

σ, σ ′) [

α2δθe ˜̄c0
S

(

s, σ ′, 0
)

+δθe + εθp

D1

(

s ˜̄c0
S

(

s, σ ′, 0
) − c∗ δ

(

σ ′)

2πσ ′

)]

σ ′dσ ′,

∂nc�0
H (s, σ, x)

∣
∣
∣
x=0

= θeθp

εθe + δθp
2π

∫ ∞

0
K

(

σ, σ ′)

×
(

c�0
H

(

s, σ ′, 0
) − α2δ2θe

2
c�0

S

(

s, σ ′, 0
)
)

σ ′dσ ′. (4.9)

We can substitute (4.7) into these equations and create the integral equations for
˜̄bS(s, σ ) and ˜̄bH (s, σ ), which now provide the linkage between the current based on
Eq. 3.13 and the cellular flux R̄ (s) of Eq. 4.7. These are Fredholm equations of the
second type. The first contains small parameters under the integral transformation and
can be solved iteratively, in our case with two iterations. The second iteration requires
an approximation of the integrand with a rational function. This approximation will be
the source of the logarithmic corrections with numerical coefficients that will appear
in our final result.

The integral in the second equation, however, is multiplied by a large parameter,
ρ0θeθp/

(

εθe + δθp
)

. An iterative solution may not be convergent. The zeroth-order
approximation of such an iterative solution corresponds to the case where no perox-
ide escapes through the outer surface of the enzyme layers. In the one-dimensional
case, the zeroth-order approximation produces an electrode current which is twice that
of the exact result. Fortunately, the diffusion of the peroxide in the microbioreactor
has a zero flux boundary condition everywhere but at the electrode interface, so we
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can constrain the flux between two limits. The one-dimensional geometry provides a
lower limit for the escaping peroxide flux into the microbioreactor. For an upper limit,
we can replace the planar electrode with a hemisphere with a radius of r0 = ρ0/

√
2

and hence identical area, and consider radial diffusion of the peroxide in the infinite
half-space below the x = 0 surface [27].

The solutions for the concentration in the two limiting cases are c0
H (s, x) =

bH (s) exp(−ξ x) and c0
H (s, r) = bH (s) exp(−ξr)

r . Writing the boundary conditions
for the concentration and its gradient at x = 0, or r = r0 and excluding ḡH (s, σ ), we
get

c−0
H (s)

∣
∣
∣
�

= −
∂n c−0

H (s)
∣
∣
∣
�

ξ +
√

2
ρ0

m
, where 0 ≤ m ≤ 1 for our bounds. (4.10)

In practice we will keep m ∈ [0, 1] as a free parameter, which (in combination with
other parameters) will be determined by our MMP calibration data without cells.

We have now completed our solution in Laplace space and need to compute the
inverse Laplace transform. Parts of this process can be performed exactly, while other
parts will use the asymptotic behavior, coming from the pole in Laplace space at s = 0,
as explained in Sect. 2.3. The exact terms improve the medium-time behavior (t ∼ τ)

during stop-flow and allow the use of shorter stop-flow times.
The current from our electrode is now given by

I (t) = I0

(

1 + V

(

1 − eB2 t
τ erfc

(

B

√

t

τ

)))

+ϕλ

((

−0.365 − 1

4
log

(
1

λτ1

))

(1 + V )

+
√

τ

t

V

B

(

0.401 + 0.141 log

(
t

λτ1

)))

+ R1τ

c∗L

((
t

τ
+ τ

6τ

)

+
)

V

((

t

τ
− 2

B

√

t

πτ

)

+
(

1

B2 − τ

6τ

)

×
(

1 − eB2 t
τ erfc

(

B

√

t

τ

)))

+ϕλ

(

− t

τ
(1 + V )

(

0.115 + 1

4
log

(
t

λτ1

))

+
√

t

τ

V

B

(

0.238 + 0.282 log

(
t

λτ1

)))

+R2τ
2

c∗L

(

t

τ

(
t

2τ
+ τ1

6τ

)

+ V

B

(

t

τ

(

B

2

t

τ
− 4

3

√

t

πτ

)

+
(

1

B2 − τ1

6τ

) (

B
t

τ
− 2

√

t

πτ
+ 1

B

(

1 − eB2 t
τ erfc

(

B

√

B
t

τ

))))
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+ϕλ

((
t

τ

) 3
2
)

V

B

(

0.034 + 0.188 log

(
t

λτ1

))

−
(

1

τ

)2

(1 + V )

×
(

−0.005 + 1

8
log

(
t

λτ1

))

+
√

t

τ

V

B3

((

0.238 + 0.282 log

(
t

λτ1

))

−τ1

τ
B2

(

(0.025 + 0.127λ) + (0.141 + 0.070λ) log

(
t

λτ1

)))

+ t

τ

(
V

B2

(

−0.115 − 1

4
log

(
t

λτ1

))

+ τ1

τ

(

1+V

(
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where for convenience we have used the dimensionless (except τ and τ1) parameters

ϕ = α2δLθe, τ = L2

D
, τ1 = L2

D1
, λ = ρ2

0

L2 , � = δ

2Lθe
,

� = 1

L

(
δ

θe
+ ε

θp

)

, B = 1

�
+ m

√

2

λ
, V = �

�B (� − �)
. (4.12)

ϕ is the key dimensionless parameter that characterizes the enzymatic coupling
between the lactate/glucose and the peroxide that donates electrons at the elec-
trode. The slightly different time constants characterizing the diffusion of the met-
abolic species (Lac or Glu) and the peroxide are τ and τ1λ is the square of the
ratio of the two characteristic scales of the device that make the diffusion essen-
tially two-dimensional. � and � are both ratios of two small dimensionless quan-
tities, but the latter also depends on the Nafion layer. When it is absent (for the
lactate case) � = 2�. B is the reciprocal of � but corrected with our adjust-
able parameter for the peroxide diffusion m. Our numerical simulations have shown
that m ≈ 0. In that case (m = 0) and for the lactate (no Nafion), V = 1.
We have neglected terms containing � = (

δθe + εθp
)

/L in the cell flux terms
(those with R1 and R2), because � cannot be determined from the no-cell cur-
rent, but such terms are small and do not affect the result. I0 is the stationary
current (3.10), which can also be written as I0 = −nFAD c∗

L ϕ
(

1 − �
�

)

. It can be
obtained from the flow-on measurements with different concentrations of the sub-
strate c∗.

While (4.11) appears complicated, the origin of each term is easy to track. All the
terms are multiplied by I0, which depends on the glucose or lactate concentration in
the media c∗, but in reality, only the first terms depend on c∗. They represent the no-cell
current. The contributions from the cells are presented by the terms proportional to the
average cell flux during stop-flow R1 and its rate of change R2. The coefficients R1 and
R2 are made dimensionless by multiplying them by τ

c∗L and τ 2

c∗L correspondingly, and
the dependence on c∗ is cancelled. For each of the three contributions (proportional to
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c∗, R1, and R2), there are several types of terms as a function of the time. The integer
powers of the time, together with some logarithmic corrections, come from the inverse
Laplace transform of the solution of the first equation in (4.9). They represent the dif-
fusion of the glucose or lactate inside the microbioreactor. The numerical coefficients
are written as decimal numbers because the kernel of the first integral equation in

(4.9) is approximated by a rational function. The eB2 t
τ erfc

(

B
√

τ
t

)

terms come from

the exact inverse Laplace transform of the solution of the second equation in (4.9). It
represents the dynamics of the peroxide escape from the enzyme layer. These terms
produce semi-integer powers of the time when their large-time asymptotic is taken.
Finally, the semi-integer powers of the time, including the logarithmic corrections,
come from the inverse Laplace transform of the product of the two contributions dis-
cussed above (i.e., they are mixed terms). To improve the current precision at medium

times, we have kept some terms proportional to
√

τ
t , although they disappear at long

times.
The parameters in (4.11) that are poorly known are ϕ, V , and B, the first two

because of the difficulties measuring α, δ, ε, θe, and θp, and the last one also because
of the model parameter m. For the lactate electrode, we must substitute ε = 0, then
� = 2�,ϕ = −I02L/(nF ADc∗), and there are only two unknown parameters. For
the glucose model, it is also beneficial to express ϕ through I0. We have shown that a
simpler expression, where the diffusion of the peroxide in the microbioreactor is con-
sidered one-dimensional (m = 0) and the complete asymptotic expansion is taken for
the time dependence of the current, works well for the lactate model. The simplified
formula is

I (t) = nF AD
ϕ

L
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(4.13)

5 Data analysis and discussion

The MMP model depends on several parameters characterizing the electrodes and the
geometry of the microbioreactor. Some, such as the electrode radius ρ0, are known
with high precision; others, such as the gap between the cells and the electrode L , are
known with 10–20% precision, due to the variability of the chamber size. The diffusion
constants D and D1 and the time constants τ and τ1 are known with similar precision,
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although the former can be measured more precisely if necessary. The enzyme and the
polymer layer thicknesses are known with much poorer precision. The parameters that
are hardest to determine are the porosities θe, θp, and the enzyme reaction parameter
α. The enzyme activity can also change with time. Fortunately all the poorly known
parameters enter the formulas in fewer combinations (ϕ, B, and V in (4.11) and ϕ and
� in (4.13)). For the lactate case, we can express ϕ through the initial current I0, so we
have only one parameter to determine. The poorly known parameters also participate
in a few combinations that can be determined through calibration measurements, in
the absence of cells, using precisely known concentrations c∗ of the lactate or glucose
in the perfusion medium.

We fit the stop-flow current when the cells are inactivated or not present, in which
case we can consider the cell flux R(t) = R1 + R2t to be zero. The best case would
be to reversibly suppress the cellular activity, without removing or killing the cells.
Removing the cells may change the geometry of the device, because of the bulging of
the filter and changes in the bioreactor gasket that determines the gap L . Killing the
cells may lead to cytolysis and uncontrollable leaking of various substances into the
bioreactor. It also prevents the repetition of the calibration procedure at a later time,
when the parameters of the enzyme layer, such as α, θe, and θp, may have changed.
In practice, the reversible inactivation is difficult, and the cellular metabolic activity
is suppressed using NaF or alamethicin. As discussed in Sect. 4.1, in the beginning of
the stop-flow period the electrode current changes rapidly due to transient processes,
mostly from the diffusion in the bulk (with time constant τ), but also including even
shorter time-constant processes in the enzyme layer and chemical reactions at the sur-
face of the electrode. These processes are difficult to model, and it is sufficient to wait
until the system enters a quasi-stationary regime. Thus, the fit is done for electrode
current values taken after a certain interval in time (15 s in this case) so that we can
use the large-time asymptotic limit for the current (Fig. 6a). The parameters extracted
from the fit of the no-cell data are used in the complete formula, when cells are present.
The two parameters, R1 and R2, are found from the fit of the stop-flow current with
cells present (Fig. 6b). The dashed line is a one-parameter fit from a numeric model of
the same device presented in Ref. [1]. When we want to extract a single value for the
cellular flux from the stop-flow period, we take R(Ts). If we compare this value with
a one-parameter fit using (4.11) or (4.13), we find about 20% difference, which might
indicate the significance of the cellular fluxes during a single stop-flow period. These
changes might be due to exhaustion of certain metabolites and the accumulation of
others in the microphysiometer chamber when perfusion is absent.

When the cellular activity is changing slowly over several stop-flow periods, we
expect that the extrapolation of R(t) from one stop-flow measurement to the next will
roughly agree with the new flux measurement. Of course, we must assume that the
metabolic change due to the stop-flow (discussed above) is smaller than the long-term
change over the same period. Discrepancies between the two fluxes may indicate a
rapid metabolic process with a time constant comparable to Ts + T f , such as the one
illustrated in Fig. 2.

The precision limits of the two-dimensional analytic MMP model are illustrated in
Fig. 7a, b. We have extracted the lactate and glucose fluxes for cells that are unper-
turbed by toxins, but for calibration purposes are exposed to cell media with different
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Fig. 7 a Lactate cellular fluxes at different initial lactate concentrations. The dots and the squares are
different approximations using (4.13). The diamonds come from a numeric model of the MMP. b Glucose
cellular fluxes at different initial glucose concentrations. The dots are from the full model (4.12), and the
squares use asymptotic expansion. The diamonds are from the numeric model

concentrations of lactate and glucose. In Fig. 7a the cells’ lactate fluxes are shown at
four different values of c∗: (0, 0.1, 0.3, and 0.6 mM). The circles use (4.13) and R(Ts);
the squares use the same formula, but with R2 = 0 and a one-parametric fit for R1;
and the diamonds come from a one-parametric fit of the same data using a numeric
model of the MMP [1]. Note that both models show that for lactate concentrations
in the media below 0.2 mM, the cells excrete lactate (the flux is negative), while for
concentrations above this value they consume lactate. Lactate is actively transported
by cells in and out. Normally the cell media does not contain lactate, which is added
only for calibration purposes.

The glucose fluxes at different concentrations of the glucose in the cell media are
shown in Fig. 7b. The concentrations are 3, 7, and 11 mM. The circles indicate the
fluxes at the end of the stop-flow extracted from the full formula (4.11), while the
squares use the asymptotic expansion of the same formula. The diamonds come again
from the numeric model [1]. All models demonstrate that the cells consume glucose at
higher rates, when it is more abundant, but there is saturation at high concentrations.

There is about 40% discrepancy between the different models and approximations.
Although the two-dimensional analytic MMP model takes into account more param-
eters of the device (the numeric model ignores the protective layer and the porosity
of the enzyme coating), it relies on approximations that are not fully validated. The
biggest discrepancy in Fig. 7b is between two different asymptotic expansions of the
time dependence of the glucose current. The discrepancy gives an estimate about the
model’s precision, which is limited, because at large glucose concentrations, non-linear
boundary conditions described in Sect. 3.5 should be used.

If higher precision is desired, we must perform stop-flow calibrations with a known
boundary condition at the cellular surface. A device that mimics the cells and pro-
vides a known constant flux can be created by substituting the filter that covers the
cells (see Fig. 1) with a high diffusion barrier (with diffusion constant DB) and filling
the space underneath with a high concentration of glucose or lactate. We can assume
that the difference of the concentrations on the two sides of the diffusion barrier �c∗
is constant during the stop-flow. Then the stationary flux through the barrier will be
R = �c∗ DB/d, where d is the thickness of the barrier. If DB is small, the time needed
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to reach a stationary regime will be large, but we can start the calibration long before
the stop-flow period of interest. It is easy to estimate the corrections of �c∗ with
time, and if d and DB are known with high precision, we can have an almost perfect
calibration, which will strongly reduce the model dependence of the extracted cellular
fluxes.

6 Conclusions

We have developed an analytic model for extracting the lactate and glucose fluxes of
cells using thin LOX and GOX electrodes and the stop-flow method. The power of
our approach is that we decouple the fast diffusion-reaction processes, which happen
in the thin enzyme layer, from the diffusion in the body of the microbioreactor, and
derive analytic formulas for the boundary conditions that are dependent on the param-
eters of the enzyme and polymer layers, some of which cannot be easily measured.
These parameters, however, can be determined from fits of calibration data where the
cellular metabolic activity is suppressed.

Although our main purpose is to create an algorithm for analyzing large amounts of
data for cells exposed to different metabolic inhibitors and activators, collected using
the multianalyte microphysiometer, the formulas for the boundary conditions at the
surface of the electrodes (3.12) and for the electrode current (3.13) can be used for
the solution of any diffusion problem containing cell fluxes in a device with different
size and geometry. The conditions that make this approach possible are the thinness
of the enzyme and protective layers and the requirement that the enzyme reaction is
controlled by the substrate (glucose or lactate) and happens in the linearized Michae-
lis–Menten regime. In particular, this approach is useful for the new generation of
nanoliter devices that are being developed at VIIBRE [7–10]. Because of the much
smaller characteristic sizes, these devices will have a much better time resolution for
the fluxes, which will allow the detailed description of faster metabolic processes.
The improved methods for manufacturing these devices will allow the determination
of their parameters with better precision and will also limit the parameter deviations
between the different electrodes. Having a limited range of device parameters will
make the numerical solution for the diffusion in the liquid compartment easier and
will make it possible to use any geometry for that compartment.

For the MMP data analysis our aim is to decrease the uncertainties in the parame-
ters and in the model by having better calibration procedures, possibly by developing
calibrations with known substrate fluxes. These procedures will greatly decrease the
uncertainties of the model due to poorly known parameters and approximations of
the diffusion equation solutions due to complicated geometries. Reducing the uncer-
tainties will allow a better time resolution to be obtained even within a single stop-
flow cycle, by being able to extract higher derivatives of the cell fluxes R (t) =
R1 + R2t + R3t2 + R4t3 + . . .. This will be another path to studying the fastest meta-
bolic time scales. The extraction of higher derivatives in the MMP setting is possible
because, compared to the nanophysiometer, there is less statistical noise in the cell
fluxes since the fluxes are averaged over more cells.
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